

Impacts of Porous Pavements on Soil Environment and Street Tree Growth

Justin Morgenroth New Zealand School of Forestry University of Canterbury

Impervious Urban Surfaces

Impervious Urban Surfaces

- Disrupt hydrological cycle
 - Local flooding, drought, limits evaporation, etc
- Associated with urban heat island effect
- Believed to hinder tree growth and physiology
- Reflected in canopy cover

Pavement is Pervasive

- 93% of roads in America unpaved in 1904
- Change came with the ascendancy of the automobile
- Now, >50% of dense urban cores paved

Photo credit: Joel Tauber

Porous Paving

- Monolithic construction:
 - Pervious paving
 - No-fines paving
 - Open-graded paving
 - Gap-graded paving
 - Percolating paving
 - Percrete
- NOT permeable paving
 - Blocks
 - Turfstone

Porous Paving

- Main reasons for installation:
 - improved stormwater management
 - safety
- Alleged to provide great benefits to urban trees
- But do they?

Here's What the Experts Think

- Prof. Bruce Ferguson, Landscape Architect, University of Georgia "ideal for protecting trees in a paved environment"
- Paul D. Tennis, Civil Engineer, Portland Cement Association "increase the longevity of trees by improving moisture and oxygen relations"
- Prof. Vern Schaefer, Civil Engineer, University of Iowa "preserving native ecosystems"
- Where's the proof?

The Big Question

Across varying pavement profile designs, does porous paving affect tree growth relative to standard impervious paving

Pavement Type

Pavement Profile Design

Structural

Non-Structural

Treatments

- 1. Control
- 2. Porous / Structural
- 3. Porous / Non-structural
- 4. Impervious / Structural
- 5. Impervious / Non-structural

Data Collection

Tree Growth:

- Stem Height
- Stem Diameter
- Shoot/Root Biomass
- Root Diameter and Distribution

Soil Factors:

- Water content
- Aeration
- pH

Did the 4 different pavement treatments affect above and belowground tree growth?

Diameter Growth

Why is above-ground growth consistently greater with porous pavement?

Root Biomass

Increased Root Growth

- Not always desirable
- Shallow root growth problematic
- Increased incidence of infrastructure conflict
 - Very Expensive Problem
- So how did pavement affect root distribution?

Photo: Cracked, uneven sidewalk along Cabanas Avenue in Tujunga in 2006.

Credit: Richard Hartog / Los Angeles Times

Root Distribution

Tree Growth Summary

- Porous paving yielded greater:
 - Stem height and diameter growth
 - Shoot and root biomass
- True only when pavement profile design excluded structural elements
- All pavements resulted in shallow root growth

What is it about porous pavements that allows trees to grow larger?

- Water
- Oxygen
- pH
- All contribute to normal growth and function

1 - Infiltration

- Porous pavement allows for rapid infiltration of rainfall
- Importance depends on current soil moisture

1. Infiltration

Increased infiltration at key times – late summer

2 - Evaporation

- Pavement
 prevents
 evaporation of
 soil moisture
- Just like mulch
- Why didn't all pavements do the same thing?

3 - Distillation

- Water follows temperature gradient
- Pavement cools faster than soil
- Gravel layer acts as capillary break

Soil Moisture Summary

- 1. Soil moisture higher beneath paved surfaces due to buffering from evaporation
- 2. Soil moisture higher without gravel subbase due to distillation effect
- 3. Soil moisture higher beneath porous pavement due to infiltration

- During wet spring, no difference
- During dry summer, porous has greater aeration than impervious
- Likely related to diurnal soil moisture dynamics

 Neutralisation of acidic soil via leaching of cations from pavements

Treatment	рН
Control	5.75
Impervious	6.00
Porous	6.35
Impervious + Structural	6.26
Porous + Structural	6.58

- Porous pavement improved tree growth by:
 - Allowing for infiltration of rain at key times
 - Allowing for higher soil aeration
 - Increasing soil pH, affecting nutrient availability
- But tree growth only occurred in the absence of a structural profile design
- · Why?

Soil Compaction

- In structural plots, soil strength was 3x greater
- Compaction acted as a bottleneck
 - Prevented roots from taking advantage of better growing conditions

Ideal Uses of Porous Pavement

- Porous pavement may be used effectively in conjunction with:
 - Suspended pavements
 - Engineered soils

Take-Home Messages

- If porous pavement is installed to improve conditions for tree growth, important to remember:
 - Porous pavement is not a miracle cure
 - Care for soil necessary if porous pavement is intended to improve tree growth
 - Take care of the soil and the soil will care for the tree

Acknowledgements

Funding: TREE Fund, University of Canterbury, New Zealand School of Forestry, Auckland City Council, Christchurch City Council, The McKelvey Fund, The Robert Bruce Trust

Supervisors: Dr. Rien Visser, Dr. Graeme Buchan, Dr. James Mackechnie

Field work: Joe Cartman, Lachlan Kirk, Nigel Pink, Alwyn Williams, Lisa Kulczycki, Neil Smith